The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability: II. Saturation Level and Critical Magnetic Reynolds Number

نویسندگان

  • Takayoshi Sano
  • James M. Stone
چکیده

The nonlinear evolution of the magnetorotational instability (MRI) in weakly ionized accretion disks, including the effect of the Hall term and ohmic dissipation, is investigated using local three-dimensional MHD simulations and various initial magnetic field geometries. When the magnetic Reynolds number, ReM ≡ v2 A/ηΩ (where vA is the Alfvén speed, η the magnetic diffusivity, and Ω the angular frequency), is initially larger than a critical value ReM,crit, the MRI evolves into MHD turbulence in which angular momentum is transported efficiently by the Maxwell stress. If ReM < ReM,crit, however, ohmic dissipation suppresses the MRI, and the stress is reduced by several orders of magnitude. The critical value is in the range of 1 – 30 depending on the initial field configuration. The Hall effect does not modify the critical magnetic Reynolds number by much, but enhances the saturation level of the Maxwell stress by a factor of a few. We show that the saturation level of the MRI is characterized by v2 Az/ηΩ, where vAz is the Alfvén speed in the nonlinear regime along the vertical component of the field. The condition for turbulence and significant transport is given by v2 Az/ηΩ ∼> 1, and this critical value is independent of the strength and geometry of the magnetic field or the size of the Hall term. If the magnetic field strength in an accretion disk can be estimated observationally, and the magnetic Reynolds number v2 A/ηΩ is larger than about 30, this would imply the MRI is operating in the disk. Subject headings: accretion, accretion disks — diffusion — instabilities — MHD — turbulence

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Simulations of Magnetorotational Instability in a Magnetized Couette Flow

In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we present non-ideal two-dimensional magnetohydrodynamic simulations of the nonlinear evolution of MRI in the experimental geometry. The simulations adopt initially uniform vertical magnetic fields, conducting or insulating radial boundaries, and periodic vertical boundary conditions. No-slip condit...

متن کامل

بررسی ناپایداری جریان های دوبعدی موازی در سیالات ویسکوالاستیک با استفاده از روش های شبه طیفی

In the present work, the effect of fluid’s elasticity was investigated on the hydrodynamic instability of Blasius flow. To determine the critical Reynolds number as a function of the elasticity number, a two-dimensional linear temporal stability analysis was invoked. The viscoelastic fluid is assumed to obey the Walters’ B fluid model for which base flow velocity profiles were fortunately avail...

متن کامل

Saturation and Thermalization of the Magnetorotational Instability: Recurrent Channel Flows and Reconnections

The nonlinear evolution and the saturation mechanism of the magnetorotational instability (MRI) are investigated using three-dimensional resistive MHD simulations. A local shearing box is used for our numerical analysis and the simulations begin with a purely vertical magnetic field. We find that the magnetic stress in the nonlinear stage of the MRI is strongly fluctuating. The time evolution s...

متن کامل

The Effect of the Hall Term on the Nonlinear Evolution of the Magnetorotational Instability: I. Local Axisymmetric Simulations

The effect of the Hall term on the evolution of the magnetorotational instability (MRI) in weakly ionized accretion disks is investigated using local axisymmetric simulations. First, we show that the Hall term has important effects on the MRI when the temperature and density in the disk is below a few thousand K and between 1013 and 1018 cm−3 respectively. Such conditions can occur in the quies...

متن کامل

Linear instability of magnetic Taylor-Couette flow with Hall effect.

The influence of the Hall effect on the linear marginal stability of a molecular hydrodynamic Taylor-Couette flow in the presence of an axial uniform magnetic field is considered. The Hall effect leads to the situation that the Taylor-Couette flow becomes unstable for any ratio of the angular velocities of the inner and outer cylinders. The instability, however, does not exist for both signs of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002